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Abstract 

The maximum likelihood estimates (MLEs) and Cramer-Rao bounds (CRBs) 
for parameters of harmonics in Gaussian noise have been well studied. If 
the phase of the signal is defined in the middle of the time interval rather 
than at the beginning (as is more common), the information matrix is ap- 
proximately diagonal, and the formulation and analysis of the MLEs and 
CRBs are simplified. More significantly, this simple modification decouples 
the estimation of phase and frequency and leads to efficient MLE gradient 
descent algorithms. In this report, these MLE procedures and CRB analysis 
are presented for the multiple and coupled harmonic case, as well as for 
colored noise. A new criterion on the required sample size is presented to 
give uniform bounds on the accuracy of diagonal information matrix ap- 
proximation; uniform bounds are needed to ensure the effectiveness of the 
gradient descent methods. These methods are demonstrated on real data 
from battlefield acoustic sensors, where they can be used to help identify 
targets of interest, such as tanks or trucks. 
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1.    Introduction 

The Cramer-Rao bounds (CRBs) for estimating the parameters of harmon- 
ics in Gaussian white noise were first presented by Rife and Boorstyn [1,2]. 
More recently, the results have been presented by Stoica et al [3] and Porat 
[4] and extended to include multiplicative noise by Zhou and Giannakis 
[5]. The estimation algorithms presented by Stoica et al [3] do not exploit 
a key observation made originally by Rife and Boorstyn [1], and more re- 
cently by Porat [4], on the effect of defining the phase of the signal in the 
middle of the time interval rather than at the beginning, which is more com- 
monly done. Perhaps some reluctance in using the less common definition 
is due to the misperception (as in Porat [4]) that odd and even numbers 
of samples need to be treated separately. With the phase in the middle of 
the time interval, the information matrix is approximately diagonal as com- 
pared to the results in Stoica et al [3] and elsewhere, where the phase and 
frequency estimates have significant correlation, and the formulation and 
analysis of the maximum likelihood estimates (MLEs) and the CRBs are 
simplified. More significantly, this simple modification decouples the esti- 
mations of phase and frequency and leads to more efficient MLE gradient 
descent algorithms. To ensure the effectiveness of the gradient descent al- 
gorithms, I suggest a new criterion for the required sample size that gives 
uniform bounds on the accuracy of diagonal information matrix approxi- 
mation. In this report, these MLE methods and CRB analysis are presented 
for the multiple and coupled harmonic cases, as well as for colored noise, 
with application to real data from battlefield acoustic sensors. These ap- 
proaches and analysis provide valuable insights into the problem of target 
identification and the design of computationally efficient battlefield acous- 
tic systems. 



2.    Harmonic Signal Models 

The classic real single harmonic signal model for the signal s(t) at continu- 
ous time t is 

s(t) = Acos(uit + (f>) , (1) 

where A > 0 is the amplitude, to is the angular frequency, and 4> is the 
phase. The frequency / = Lü/(2TT) is often the natural parameter, but using 
UJ helps simplify the notation, and results can be readily applied to both. It 
is sometimes preferable to write equation (1) as 

s{t) = ucos(tot) + vsm(ujt) , (2) 

where u = Acos((/)) and v = -Asm((p) are the in-phase and quadrature- 
phase components of the signal. The parameters in equation (2) can be 
transformed to those in equation (1) via 

A = {u2 + v2)1'2 , 

<j) = arctan(—v, u) , (3) 

where arctan is the four-quadrant arc tangent function (MATLAB function 
ATAN2). The parameters of this model will be denoted by 6 = (A, (/>, UJ) or 
e = (u,vj). 

The multiple harmonic model generalizes equation (1) as 

s(t) = ]P Ak cos(uokt + (j>k) (4) 
fe=i 

and equation (2) as 

m 

s(t) = ^2 Uk cos(cokt) + vk sm(u>kt) , (5) 
fe=i 

so that the multiple harmonic parameters are 0 = (A, 4>, UJ) in equation (4) 
and 6 = (u, v, UJ) in equation (5). An important model that is a special case 
of equation (4) is the coupled harmonic signal model 

m. 

sit) = ]T Ak cos(hkut + (j)k) , (6) 
fe=i 



where LO is called the fundamental frequency, hk is an integer indicating the 
kth harmonic number (assumed known), and Ak and <f>k are the amplitude 
and phase of the fcth harmonic. It is clear that equation (6) is equivalent 
to equation (4) with ujk = hku, but the number of parameters has been 
reduced (2m + 1 instead of 3m) and will be denoted by 6 - (A, 0. J) or 
6 = (u, v,a>). 

The data sequence X[m] received at the acoustic sensor (for the application 
presented in sect. 7) is an equally spaced sampled version of the continuous- 
time model: 

X[m] = s(t{m)) + Z[m] , (7) 

where t(m) is the time of the mth sample and Z[m] is the cumulative addi- 
tive noise. Without loss of generality it is assumed that the sampling rate 
is T = 1 so that difference t(m) - t(m - 1) = 1 for all m, and the frequencies 
are normalized so that Nyquist is IT. In order to ensure that the parameters 
are identifiable, it is required that A > 0 and 0<w<7r(0</<l/2). 

Let y = (yi, 2/2, • • •, Vn)T be a vector denoting a given set of n samples from 
the data over a particular time window. The time reference in equation (1) 
can always be redefined, so without loss of generality, we can assume that 

yi = X[t(i)]. The model in equation (7) can be written as 

x = S(6) + z , (8) 

where 
Si(8) = Acos(ujt{i) + cf>) . (9) 

First consider the case where Z is assumed white, so that the noise vec- 
tor z is multivariate Gaussian JVn(0, <r2I); that is, zi, z2, ■ ■ ■, zn are indepen- 
dently and identically distributed (i.i.d.) Gaussian with variance a2. To sim- 
plify the analysis, I assume the variance is known, although all the results 
presented are equally valid in the unknown case. In this case, the MLE 
maximizes 

log(L(y,0)) = -^||y-s(ö)||^-n/21og(2^), (10) 

which is equivalent to minimizing the residual sum of squares 

SS{6) = \\y-s(e)\2 = \\e\\2 , (11) 

where e = e(9) is the residual error. 

The information matrix for estimating the parameters of s(0) is given by 

1 <9sT<9s 

*»> = ;?£ !• (12) 



where 

is a matrix of first derivatives. 

~ds~ 
d0 y 88i 

(13) 

Calculations of the CRBs for the harmonic signal models are somewhat 
complicated but involve the straightforward use of trigonometric identities 
and summation formulas. While exact information matrices can be readily 
calculated, interpretation is only practical if approximations are used for 
large sample sizes n. Approximate results are obtained via the standard 
summation formula (and its first and second derivatives), which for arbi- 
trary time indices is 

1   n 

- Y, cos(wi(i) + (/>) = cos(<f> + (t{l) + (n- l)/2)u)e(u/2) ,       (14) 
i=\ 

where 

e(u) 
sin(nu;) 

(15) 
nsin(co>) 

is the normalized Dirichlet kernel. A classic result, first presented by Rife and 
Boorstyn [1] (for the single-tone complex case) and also discussed in detail 
by Kay [6], is the CRB for the single harmonic model, where the information 
matrix is approximately 

I(A,<f>,u) « p 

n 
A2 

0 

0 

0 0 

E?=i*(0 E?=i*(02 

(16) 

where p = A2/(2a2) is the signal-to-noise ratio (SNR). For Fourier analy- 
sis and other applications, the time samples are taken to be t(i) = i — 1 
or t(i) = i, so that the phase is associated with the beginning of the time 
window. For t(i) — i - 1, inverting equation (12) leads to the approximate 

CRBs 

CRB [.A] 

CRBFÄ1 

A2      2a2 

np 

2{2n 

n 

-1] 
(n(n+ l)p 

for phase and amplitude and 

CRBlwl 
12 12 

n(n  — l)p      rfp 

(17) 

(18) 



for frequency. It also leads to 

CRB[/] = 
(2*0 

rCRB 
12 

u\ 
(2vr)2n(r72 - \)p 

(19) 

for the alternative definition of frequency. 

As equation (12) shows, the approximate information matrix can be made 
diagonal if the sum of the time samples is 0. This can be accomplished with 
t(i) = i - (n + l)/2 and corresponds to associating the phase with the 
middle of the time window. In this case, 

I{A,<j),Lj) np 

1 0          0 

0 1          0 

0 0   1(„= 1) 

(20) 

which can be readily inverted to give approximate CRBs that agree with 
equation (17), except, notably, for 

CRB[ 
_1_ 
np 

(21) 

which, as first noted by Rife and Boorstyn [1] is the minimum value for any 
location of phase and is equal to the CRB when frequency is known. 

The bound for estimating the phase in the middle of the time window is a 
factor of 2(2n — l)/(n +1), or roughly four times smaller than the bound for 
estimating the phase at the beginning of the time window. To see why, note 
that the estimate of phase at the first sample and the phase at the middle of 
the samples, denoted by 4>Q and "^jii respectively, are related by 

4>o = ^1/2 - (« - l)w/2 , 

so that for minimal variance unbiased estimators, 

Var[^0] = Var$1/2] + Var[(n - l)w/2] = — + 
(n 12 2(2n 

np 4       n(n2 — \)p      n(n + \)p 

(22) 

(23) 

which agrees with equation (17). 

The reduction in variance of the estimate of ^i/2 should not be miscon- 
strued as somehow a better overall estimate of the signal. The equality in 
equation (22) (or similar relationships) can be used in reverse, to go from 
equation (21) to equation (17) (or other CRBs), so if one is interested in 4>Q 

or any other location of phase, the variance will increase and nothing will 
change that. In terms of ease of analysis for the single harmonic case, the 



tradeoff in using the phase in the middle of the window is between invert- 
ing a 2 x 2 matrix in equation (16) and evaluating £ t(i)2 for nonstandard 
time indices (i.e., t(i) = i-(n +1)/2 instead of t(i) = i-\). The preference, 
debatable at best, is certainly not a big issue. However, with more com- 
plicated analysis such as that presented by Stoica et al [3] and Zhou and 
Giannakis [5], the small increment of simplicity in this approach is prob- 
ably welcome. Unless noted otherwise, the results presented here reflect 
the phase defined in the middle of the time window. Besides easing the 
analysis, it is shown in section 5 that the diagonality of the information 
matrices leads to more efficient estimation procedures, including instances 
in which the decoupling of the frequency and phase estimates is crucial. 

An approximate CRB for harmonic signal models can be made more ex- 
plicit through use of an asymptotic Cramer-Rao bound (ACRB), which can 
be obtained from an asymptotic information matrix of normalized param- 
eters. For example, in the case of a single harmonic, the ACRBs are given 
by 

ACRB[i] 

ACRB[</>] 

= 2a2 

P 
12 

(24) 

ACRB[w] = — 
P 

and are obtained by inverting 

MA&w) =  lim Inin-^A^-^&n-^u;) = p 
n—>oo 

1 

0 

0 0 

1 0 

0    0 1 
TS 

(25) 

where 1^ is the asymptotic information matrix. In this report, each CRB 
given as an approximation is with the understanding of this relationship to 
the ACRB. 

Stoica et al [3] have shown that all the cross-terms in the asymptotic infor- 
mation matrix for the multiple harmonic signal model involving different 
harmonics are zero, so the generalization of equation (20) is still approxi- 
mately diagonal, 

/(A,<£,o>) 
n 

2V2 

I 0 

0 D 

0   0 T2 

0 

0 

n2D 

(26) 



l2^ hrtJ (27) 
where 

D = diag(A2,...,^ 

is a diagonal matrix. So the CRBs for the multiple case are approximately 
all the same as the single case; that is, 

CRB[ijt] 

CRBfo] 

CRBßfc] 

1 
npk ' 

12 

(28) 

where p*. = Ay (2a2) is the SNR of the feth harmonic. 

For the coupled harmonic case, the cross-terms are all asymptotically zero, 
and the information matrix becomes 

n 
7(A,0,w) w ^2 

10 0 

0 D 0 

0   0   ^n2E^ihlA2_ 

(29) 

so that the CRBs for amplitude and phase are the same as in equation (28). 
The CRB for fundamental frequency is 

CRB UJ Mx>^- n 
(30) 

\k=i 

which agrees with the result inSwami and Ghogho [7], which was obtained 
by considering the coupled harmonic model as a constrained version of the 
multiple case. 



3.    Summation Formulas for Well-Resolved Frequencies 

All the entries of the information matrices for harmonic signal models in- 
volve summations of the form 

n 

5p{ui,U2,<l>i,<h) = Yl *WP cos(wi*W + fa) cos(oj2t{i) + fa)       (31) 
i=i 

and 

ep(u, 0) = ^FT E *(0P «»MO + 0) 02) 
j=i 

for p = 0,1,2, which are related by 

5p(co1,Lo2,fa,fa) = -np+l{ep{u)i-u)2,fa-fa) + ep{uji+uj2;fa+fa)) (33) 

with the use of a standard trigonometric identity. Using the above notation, 

one finds that 

= S0(u>i,uj,4>i,<fij) , 
dAi dAj 

dsT ds 
- = AiAj50(ui,u)j,<t>i + 7T/2,0J + 7r/2) , 

-— —- = AjA^Wj, Wj, 0i + ^A fa + V2) > 

—- —- = Aj60(wi,Uj,</)i,<i>j + n/2) , (34) 
aAj a^j 

—— —- = Ajöi(uJi,ujj,(t>i,<f>j + ir/2) , 
oAi ouij 

—— —- = AjA-^l^, Wj, </>j + 7r/2, (^ + 7T/2) , 



are the exact terms of the information matrix for multiple harmonics. 
Similarly, 

ds    ds 
ßj-.gj-.  = öo(hiU),hjW,<l>i,<f>j) , 

ds    ds 
—— —-  = AiAjö0(hiLü, hjuj, & + ir/2, <f>j + ir/2) , 
dcpi d(pj 

<~i T  <-» mm 

—— — = Y^ Yl hihjAiAjÖ2{hiüj, hju>, fa + 7r/2, 4>J + n/2) , 
i=lj=l 

ds    ds 
= Aj6o(hiUj, hjui. 4>i, 4>j + 7r/2) , (35) 

=  Y^ hjAjSi(hiUJ, hjto, fa, 4>j + 7r/2) , 

cL4j <9</>j 

dsT ds 
dAi duo        .  . 

—— — = /ijAj V hjAjöi(hiUj, hjui, fa + 7T/2, 0j + 7r/2) , 
<% 9w j=i 

are the exact terms of the information matrix for coupled harmonics. 
Approximations of the information matrices of harmonic signal models 
(ijji = hiuj for coupled harmonics) require that 

öp(üJi,üjj,(j)i,(j)j) « 0, 

5p{ujt,uhfa,fa) « ^np+1ep(0,0) , (36) 

for 1 < i < j < m. The approximations in equation (36) are valid if the 
summations in equation (32) are near 0 for all combinations of their sums 
and differences, u;, ±Uj, except for u>i = UJJ . If this requirement is met (under 
some specified criteria), the frequencies will be called well resolved. For a 
given set of frequencies, a natural question is how large n needs to be in 
order for them to be well resolved. 

Using two-term expansion of the exact information matrix about the ap- 
proximation in equation (26), Porat [4] shows that for multiple harmonics, 
the first-order accuracy of the approximate CRBs in equation (28) is depen- 
dent on the value of the normalized Dirichlet kernel in equation (14). The 
normalized Dirichlet kernel attains a maximum of 1 at UJ = 0 (and multiples 
of 7r) and has main lobes between ±ir/n and IT ± ix/n. A reasonable require- 
ment for n is that these critical values of u lie outside these main lobes; this 
leads to Porat's requirement [4], 

fir       TT 2ir 2TT \ 
n>    max       —, ,- r,     , (J/) 

l<i<j<rn \ LOi    TT — LOi    \Ui — U!j\    Z7T — Ul{ — iüj I 



which is a simple rule of thumb for estimating a sufficient sample size. 
While equation (37) controls the bounds on the variances of the param- 
eters via equation (49), it is also important that covariance terms be small, 
such as when using the method of scoring. The correlations between 
frequency and both phase and amplitude are on the order of e\ and 
€i(ir/n) f« -1/7T = -0.3183 for the minimal sample size to satisfy equation 
(37). This may not be small enough for some applications, and equation (37) 
would underestimate the required sample size in this instance. I propose a 
supplemental criterion for calling frequencies well resolved that ensures 
that the summations in equation (32) are uniformly small. 

Equation (14) shows that, more specifically, the denominator of equation (15) 
must be large in order for e0 to be small. This motivates calling n sin(w) the 
frequency resolution and defining its inverse, 

AM = —V"v (38) 

which could be called the frequency coarseness. With the phase defined in the 
middle of the time window, f (1) = -(n - l)/2, and equation (14) simplifies 
to 

e0(u, <p) = cos{<j>)e{uj/2) = cos(<£) sin(no;/2)A(w/2) , (39) 

which is valid for n, both odd and even. A particular case of equation (39) 
is n 

eo(w, -7T/2) = Y, sin(wt(i)) = 0 (40) 
i=i 

for all uj, which is also evident by the antisymmetry of the time samples and 
the symmetry of the sine function around 0. Differentiating e0(w, <j> - TT/2) 

leads to 

= - sin(^)A(w/2) (- cos(nw/2) + sm(nLü/2) COS(UJ/2)A{U>/2)) , (41) 

which, by the use of l'Hopital's rule, can be shown to be continuous at 
u> = 0, where ei(0,4>) = 0. Similarly, differentiating ei(w, 4> - K/2) leads to 

62(0,, <f>)  = j cos((/>)A(u;/2) (- sin(nu;/2) + 2cos(nu;/2) COS(Lü/2)A{Lü/2) 

-sin(na;/2)(l + cos2(nw/2))A2(w/2))  , (42) 

which is also continuous at u> = 0, where, for example, e2(0,0) = (1 - n~2)/12. 

ei[LU,, 

10 



It is easy to find the following bounds, 

\e0(w,</>)\  < A(w/2), 

|€i(a;^)|  <  (A(W/2) + A2(a;/2))/2, (43) 

|e2(w,^)|  <  (A(w/2) + 2A2(w/2) + 2A3(w/2))/4, 

which, for all pertinent to > 0 and n already satisfying equation (37), leads 
to the simple uniform bound on equation (32), 

|€p(W)^)|<A(u;/2), (44) 

and, ultimately, 
1^(^1,072,^,02)1 < n*+1A(a;/2) , (45) 

for u\ ^ u>2 in equation (33). So perhaps better criteria for selecting n are to 
require that A be small and to ensure the uniform bounds in equations (44) 
and (45), which lead to 

A(w) =     min    [A(wi), Aflwj - uy|/2), A((WJ + Wj)/2)] < e       (46) 
l<i<j<m 

for some specified tolerance e > 0. These criteria are equivalent to 

1 [     1 1 1 
~~ i<j<j<m e    sin(wj)' sin(|wj — Wj|/2)' sin((wj + UJJ)/2) 

which is nearly the same as 

(47) 

n>    max    -    —, ,-      , (48) 
\<l<j<m e   \Ui    7T — U>i     \U)i — Uj\    ZTT — Ui — LOj  I 

when one uses approximations of the sine function near 0 and TT. Note that 
equation (48) is a generalization of equation (37), with e — 1/ir. So in or- 
der to get stricter requirements on the sample size, the tolerance should be 
selected so that e < 1/TT. 

In terms of A, the expressions given by Porat [4] for multiple harmonics 
become 

CRB[ifc]  = — fl-cos(2^)sin(nWfc)AK.) + o[AH]}, 

CRB[^]  = — {l + cos(2^.) Sm(nujk)A(üjk) + o{A(u)}\ ,       (49) 
npk 

for amplitudes and phases, and 

12 
CRB[u;fc] = -3—f 1 + 3cos(2^.) sin(nu;fc)A(u;fc) + o[A(u>)]\       (50) 

11 



for frequency, where o[A(u>)] is a term that goes to 0 faster than A(w). 
The analogous expression for the CRB between frequency and phase of the 
same harmonic, for example, is 

CRB$fc, u)k] = -%- cos(nu;k)A(ojk) + o(A(w)) , (51) 
^  Pk 

which suggests the appropriateness of equation (46) if this term needs to 
be near 0. 

The requirements for well-resolved frequencies generally apply to the 
coupled harmonic signal model, and expressions like equation (49) are 
readily available for amplitudes and phases. The analogous expression of 
equation (50) for fundamental frequency is not especially illuminating, but 
the ratio of the second term to the first term is seen to be on the order of 
A(w) when one notes that 

dsT ds 1 m m    m 

Lnh(0,0)Y,hU*   < n3A(u;)5:j>M^ 
du duj      2 .  , i=ij=i 

/ m 
= n3A(u>)   5>iAi ) (52) 

m \ 2 

i=l 

< mn3A(iv)J2hJA] , 
i=l 

where the last step follows from the Cauchy-Schwarz inequality. So the 
first-order approximations for the coupled harmonic case are still on the or- 
der of A(w), and the choice of n by equation (46) or (47) is still appropriate. 

12 



4.    Maximum Likelihood Estimation for Multiple and Coupled 
Harmonics 

Since equations (6) and (1) are special cases of equation (4), we present the 
MLE procedures in terms of the multiple harmonic case. The gradient de- 
scent methods for equation (6) are sufficiently distinct and will be treated 
separately. With equation (5), the multiple harmonical parameter estima- 
tion problem can be written as a linear model 

y = X/3 + z , (53) 

where X = X(w) is an n x 2m matrix and the parameter 

ß = (54) 

is a 2m x 1 vector. One can write X = [CS], where C and S are n x m 
matrices given by 

dj = cos[u)jt(i)] 

Sjj = sin[ujjt(i)] , (55) 

so that equation (53) becomes 

y = Cu + Sv + z (56) 

in terms of u and v. For Gaussian white noise, the MLE of ß for fixed fre- 
quencies CJ is also the least-squares estimator (LSE), given by 

ß = ß(u) = (XTX)"1XTy (57) 

when the standard method of least squares is used. The MLEs of u and v 
are readily found with equation (54), and 

(f)k = asctan(-Vk,uk) (58) 

are the MLEs of the amplitude and phase. Finding the MLE of 0 requires 
some sort of search, either grid or gradient descent, to find the minimum 

13 



value of equation (11). So, for moderate m, finding the MLE of the har- 
monical parameters is potentially computationally expensive because of 
the matrix inversion in equation (89). Fortunately with the phase defined 
in the middle of the time window, XTX is block diagonal and it decouples 
the estimation of u and v. Moreover, XTX is approximately diagonal, and 
accurate estimates can be obtained without inversion. 

In terms of C and S, 

XTX = 
CTC STC 

CTS srs 

CTC    0 

0     STS 
(59) 

The estimation of u and v decouple into 

ü = (C^C)"1^ , 

v = (S^Sr^y , (60) 

which is computationally more efficient than using equation (57) if the 
phase is not defined in the middle of the time window (inverting two mxm 
matrices is better than inverting one 2m x 2m, matrix). For single harmonics, 
the exact MLE can be easily found, because 

n 
CJC =  -(1 + eH) 

n 
S^S   =   -(1-6(0;)), (61) 

where e{u>) is given by equation (15). So 

1       2 
1 + e(u>) n 

u CTy, 

1 
1 el a;) n 

-STy (62) 

is the exact MLE from equation (60). 

For multiple harmonics, the exact entries of the matrices to be inverted are 

[CTC].. = 50(^,^,0,0) 

S7S = 50(uJi,ujj,-T:/2,-Tr/2) 

which for well-resolved frequencies leads to the well-known result 

X2X :I, 

(63) 

(64) 

14 



with the use of the approximations in equation (36). So accurate approxi- 
mate MLE solutions without matrix inversion for u and v are 

ß « -XTy , (65) 
n 

which in the single harmonic case is equivalent to setting e(w) to 0 in equa- 
tion (62). An alternative approximate MLE for the multiple case is to use 
equation (62) for each estimate separately, 

1       2    T 

1 + e{u)) n 

Vk 
1       2^T 

1 — e(uj) n -sly, (66) 

where C = [Ci, C2,..., Cm] and S = [Si, S2,..., STO]. The estimates in 
equation (66) correspond to setting all the off-diagonal terms in CTC and 
STS equal to zero in equation (60). 

The MLE of u and v can also be efficiently and simply estimated with the 
fast Fourier transform (FFT) of y. The continuous Fourier transform (CFT) 
of y, denoted by Y(f), is 

n 
y(/) = ^e-2^7*(0j/. (67) 

i=\ 

for 0 < / < 1/2. Usually t(i) = i - 1 in equation (67), but for the com- 
parison of different phase estimates, it is important to stay consistent. In 
practice, one can easily add a phase correction to equation (67) to account 
for any differences in the time indexes. The FFT—or more precisely, the dis- 
crete Fourier transform (DFT)—calculates equation (67) only at the center 
frequencies Fk = k/n of the Fourier bins for k = 0,1,..., [n - 1). For each 
üj = 2?rf, one can obtain approximate estimates using the FFT, by rounding 
the frequencies to the nearest frequency bins: 

, =   ^Re{y[round(n/fc)/n]} , 

.. = --Im{y[round(n/fc)/n]| , (68) 

where round(x) is the nearest integer to x. This procedure is equivalent 
to equation (57), with the harmonic frequencies rounded off to the nearest 
Fourier bin, which makes XTX = (n/2)I (exactly). The MLE of the ampli- 
tude (of the harmonic at the nonrounded frequencies) can be obtained with 
equation (58), but to account for using the center frequency of the Fourier 
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bins rather than the exact frequencies, a better estimate of the phase (i.e., 
less biased) is 

4>k = arctan(—Ofc, uk) -   nfk - round(n/fc 
ra-1 

TT- 
ri 

(69) 

which can be a correction of almost TT/2 for harmonic frequencies that 
are half a bin away from the center. Note that the approximate estimate 
equation (65) is equivalent to use of the CFT in equation (67) rather than 
the DFT, which leads to 

Uk he 
n 

-Hto n 

Y(fk) 

Y(h) 

this is simply equation (68) without rounding. 

(70) 
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5.    Gradient Descent Methods for Finding MLE 

The MLE of the harmonic parameters can be found by gradient descent 
methods. Since for fixed frequencies, the MLE of the other parameters can 
be obtained with equation (60), these gradient descent methods are needed 
to find the MLE of the frequencies u> or the fundamental frequency u. Gra- 
dient descent methods can be implemented directly in terms of the ampli- 
tudes and phases, but this does not take advantage of the linearity of the 
parameterization in equation (5). The Newton-Raphson method uses an 
initial estimate 90 and iteratively updates the estimate via 

01-+1 = 9 
■ö2log[L(y,ö)]\"1ölog[L(y,ö)] 

k+1~ k d6deT do 
(71) 

0 = 0,. 

which requires the inversion of the Hessian of the log-likelihood function. 
The gradient vector and the Hessian matrix in equation (71) can be written 
as 

01og[£(y,g)] = ±dfe (72) 
89 a2 86      ' K   ' 

and 
aiog[L(y,g)] } 

8989T V  ; 

where the second component is 

w=■??:$« ™ 
and I is the information matrix defined by equation (12). An alternative to 
the Newton-Raphson method, called the method of scoring, is to replace the 
Hessian by its expected value; this method of scoring is often preferable 
because it involves less computation and has stabilizing properties. From 
equation (74), E[3(0)] = 0, and the expected value of the Hessian is 

r^oglL(y9)n 
\       8989T       I 

so that replacing the Hessian in equation (71) by equation (75) gives 

_! d\og[L(y,8) 
9k+1 = 9k + 1(0)- 

89 0 = 0,. 
(76) 
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which is the method of scoring. The method of scoring is presented by 
a derivation of the approximate diagonal information matrices for the 
parameterization with u and v. These results are presented with different 
notation than that for amplitude and frequency, which has proven to be 
useful for implementation in MATLAB. 

For the single harmonic case s(u, v, UJ) = Cu + Sv, so that 

where 

and 

9s 
90 = c s &' L           oco J i 

9s dC       9s 
du       du> 

. du. i 
—t(i) sm[uit(i)] , 

\dS] 
dio_ i 

t(i) cos[u)t(i)] 

(77) 

(78) 

(79) 

are nxl vectors of first derivatives obtained from equation (55). The infor- 
mation matrix is approximately diagonal 

I(u,V,Lü) = 
a 

fcrc     o    c^l 1 0       0 

o     s-s   s-f n 
0 1        0 

CT9S    ST9S    ||9S||2 
L       oco       du;   "aw"   J 0 0 ^A2n2 

(80) 

which greatly simplifies the computation for each iteration in equation (76). 
For multiple harmonics with 0 = (u, v, u>), 

ds 
90 

C S 9s 

where 
9s 

duii 

dCk 

ds 
d~u 

dSk 
Uk + T{ Vk 

(81) 

(82) 
du)k      dujk du)k 

and generalizes equation (77). The information matrix is still approximately 
diagonal, 

rio     0 
n 

/(u,v,u;)«^ (83) 0  1        0 

0 0 n2D/12. 

where D is given in equation (27), which once again leads to efficient com- 
putation of each iteration in equation (76). The Hessian for the harmonic 
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case is similar to that of the multiple, except that it contains only one fre- 
quency parameter instead of m frequency parameters. With 6 = (u, v, u), 

|r§ can be written as in equation (77), but, in this case, 

ös _ ÖX        dC        ds_ 

dio      du du        dio 
(84) 

and 

dC 

dio 

■dS 

duo 

ji] 

1-3 

— — hjt(i) sin[hjiot(i)] 

= hjt(i) cos[hjiot(i)} (85) 

are n x m matrices of first derivatives obtained from equation (55), with 
u)k = hku. The information matrix is once again approximately diagonal, 

I(U,V,LO) 
n 

2? 

10 0 

0  1 0 

0 0 ^n2 JXi h\A\ 

(86) 

and leads to an efficient implementation of equation (76) to estimate fun- 
damental frequency 

As expected, the information matrices in equations (80), (83), and (86) lead 
to the same bounds for the frequency parameters in equations (17), (28), 
and (30), respectively. One can also get the approximate CRBs for u and v, 

CRB[uk] 

CRB{vk] « — , 

2o2_ 

n 
2_o_2 

n 
(87) 

for both the multiple and harmonically related models. The CRBs in equa- 
tion (87) are obtained exactly for the case when the frequency parameters 
are known. 

Because of equation (57), methods can be developed for only the MLE of 
the frequency parameters. For the general multiple harmonic case, this is 
equivalent to finding u to minimize 

(w) = SS(u, v, u) = eTe = ||y - Py ||2 = ||y ||2 - yTPy , (88) 

or, alternatively, to maximize the signal energy 

E{u>) = yTPy , (89) 
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where 
p = px = X(XTX)-1XT (90) 

is the projection onto the subspace spanned by the columns of X(a>). Note 
that e, defined in equation (88), is the residual error at the optimal value. 

Newton's method for estimating fundamental frequency is 

(91) 
fdSS2\   1 dSS 

LÜ = Wk 

where SS = SS(u) is given by equation (88) for the harmonically related 
case. To simplify the implementation of equation (91), I propose a decou- 
pled procedure that first estimates the coefficients assuming fixed frequency, 
perhaps using an efficient approximation such as equation (68), and then 
optimizes frequency assuming fixed coefficients. It turns out that this pro- 
cedure is equivalent to setting the cross-terms in the information matrix 
involving (u, v) and LO to zero in the method of scoring procedure for the 
coupled harmonic case. For example, the method of scoring for this ap- 
proach simply becomes 

where, as mentioned before, ß can be an approximate MLE of the coeffi- 
cients to conserve computation. It is important to note that defining the 
phase in the middle of the time window is not just a matter of convenience 
in this case, but is absolutely necessary for the performance of this decou- 
pled estimation procedure. 
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6.   Colored Noise 

Now I consider the case where Z is no longer assumed white, but instead 
wide-sense stationary (WSS) Gaussian with a known covariance of KZz{k) 
and 

a^cv) = Pzz(co) =   Y,   e-j^kKzz(k) (93) 
k=-oo 

is the power spectral density or local noise variance. If the noise vector z in 
equation (8) is multivariate Gaussian Nn(0, £), where £*,- = Kzz(i - j), 
then 

■<•>=£ *-'£ <*> 
is the information matrix. Approximate results in the colored Gaussian 
noise case can be obtained with the following approximation, which is 
valid for large enough n and under mild assumptions on a2(uj) 

.Vi      IfÄl^, (95) 

where a and b are n x 1 vectors with continuous Fourier transforms (i.e., 
equation (67)) A(u>) and B{u), respectively. With the use of equation (95) for 
the case of estimating multiple and coupled harmonics, the vectors often 
asymptotically have discrete spectra, and the approximation can be eval- 
uated quickly by the notion of delta functions or more rigorously by the 
measure-theoretic interpretation of the integral. An important point to re- 
alize about this approximation is that, depending on the nature of the co- 
variance function, it may require a larger n to become valid than is given in 
equation (47). 

An interesting result of equation (95) (or methods used by Ghogho and 
Swami [8]), is that, under mild assumptions, the CRBs for the colored Gaus- 
sian noise case are approximately equal to those in equations (28) and (30), 
with a2 = <72(%w) and 

-4 <96) 

the local SNR. The dependence on local SNR can be seen heuristically by 
noting that the spectral density for the partial derivative of s with any of 
the harmonic signal model parameters will asymptotically have all its mass 
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concentrated at the corresponding frequency, and, by equation (95), the en- 
try in the information matrix will depend only on the local noise variance. 
The MLE for colored Gaussian noise is 

ß = (XTE-1X)-1XTS-1y , (97) 

which generalizes equation (57). Using equation (95), it can be shown that 

CTE-1S 

STE-1C 

0 

0 (98) 

and equation (97) separates into the cosine and sine components and in the 
same way as equation (60). Further, 

CTS_1C « S^^S ss -diagh/aVx), 1/<T
2
(ü;I)> l/a2(um)     (99) 

and 

Cly/a2(uk) , 
Sly/a2(cok) , (100) 

so that 

Vk 

2a2(ojk)/n] [Cly/a2^)} = {2/n)CT
ky , 

2a2(uk)/n] \sT
ky/a2{uk)\ = (2/n)S£y , (101) 

which is exactly the same approximation as equation (65) and the CFT 
estimates, equation (70). In a similar manner, the DFT estimates in equa- 
tion (68) and the estimates in equation (66) are approximately valid in the 
colored noise. So asymptotically, estimating multiple harmonic in colored 
noise completely decouples into estimating m single harmonics in white 
noise with variance equal to the local noise variance at that harmonic. 
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7.    Coupled Harmonic Model for Battlefield Acoustic Targets 

Target identification using battlefield acoustic sensor arrays is an impor- 
tant problem for the Army [9]. Acoustic signatures of targets of interest, 
such as tanks and trucks, exhibit time-varying patterns of harmonic am- 
plitudes that facilitate target ID. The spectrogram from one of an array 
of seven acoustic sensors taken by the Army Research Laboratory (ARL) 
during recent field tests at Aberdeen Proving Ground (APG), Maryland, 
is shown in figure 1. The sampling rate is T = 2000 samples/s and FFTs 
were taken with n = 2048 samples. The target is an M60 tank that is ap- 
proaching the sensor until the time of the closest point of approach (CPA), 
at approximately t = 40 s, and retreating afterwards. The range at CPA is 
approximately 50 m. 

The harmonic structure and the time-varying nature of the signal are very 
apparent. The strongest line at approximately 90 Hz is the sixth harmonic, 
so that the fundamental frequency is approximately 15 Hz. A coupled har- 
monic signal model accurately models a large portion of a vehicle's acoustic 
signature, especially that coming from the engine. For the current ARL tar- 
get ID system [10], the second through twelfth harmonics are used so that 

Figure 1. Battlefield 
acoustic data with 
time-varying coupled 
harmonic signal. 
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h = (2,3,4,5,6, 7,8,9,10,11,12)r and m = 11 in equation (6). The addi- 
tive noise process Z in equation (7) consists of the cumulative effect of am- 
bient noise such as wind, broadband and narrowband nontarget sources, 
and a portion of the target's acoustic signature not completely described 
by equation (6), such as the additional line at approximately 50 Hz in fig- 
ure 1, which is coming from the track slap. An example of data from a short 
time window (approximately 0.25 s) is shown in figure 2, which shows the 
first 512 samples from the same data as in figure 1. For battlefield acoustic 
scenarios, the fundamental frequency can be assumed constant for short 
time windows (on the order of 1 s), and the stationary methods presented 
can be applied. 

7.1   Fundamental Frequency Estimators and Trackers 

For each fundamental frequency /, the residual error of the coupled har- 
monic signal model can be efficiently and simply estimated by the FFT 
of y, with fk = /ifcw/(2-7r) in equation (68). In practice, the search for the 
fundamental frequency is limited over a small range of values, e.g., 5 to 
20 Hz in increments of 0.1 Hz. A plot of the residual error power SS/n in 
equation (88) for the data in figure 2 (the true fundamental frequency is ap- 
proximately / = 15.5 Hz) is shown in figure 3. A series of clear regions of 
minimum power shows, in this case, that the fundamental frequency needs 
to be known initially to within a certain accuracy (roughly 5 Hz) to guaran- 
tee that this method finds the correct local minimum. Once a fundamental 

Figure 2. Acoustic data 
with coupled harmonic 
signal. 
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frequency is estimated, the estimate of amplitude can be readily found, al- 
though it is important to use the corrected estimate of the phase in equation 
(69). The fundamental frequency can be estimated more accurately with the 
exact MLE. A plot of the residual error power for the MLE of the data in 
figure 2 (assuming white Gaussian noise) is shown in figure 4. The plot 
is similar to figure 3, except that the maximum values are much sharper, 
which suggests that the MLE estimate will be much more accurate. 

Figure 3. Residual error 
power for FFT 
fundamental frequency 
estimation. 
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Figure 4. Residual error 
power for MLE 
fundamental frequency 
estimation. 
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Figures 3 and 4 suggest that a simple but effective fundamental frequency 
tracker can be constructed, assuming an accurate initial value has been ob- 
tained. Subsequent estimates can be obtained if one minimizes equation (3) 
over a range of fundamental frequencies equal to the previous estimate 
plus a reduced number of offsets reflecting the maximum expected change 
over the time window. For the data in equation (1), accurate estimates of 
the fundamental frequency were efficiently obtained using FFTs with this 
approach, an initial value of 15.5 Hz, offsets of -0.25 to 0.25 Hz in incre- 
ments of 0.025 Hz, and time windows of length n = 2048 with 75 percent 
overlap. The iterative procedures using the gradient descent methods de- 
scribed previously can be modified slightly to track fundamental frequen- 
cies by an adaptive filter. For the data in equation (1), this approach tracked 
the fundamental frequency accurately for most of the run, but did lose the 
signal for the last 10 s or so, where the signature changed significantly. 

7.2    Harmonic Amplitudes and Phases for Target Identification 

Using the estimates of fundamental frequency obtained from the tracker 
described above, I obtained estimates of amplitude and phase for the data 
in figure 1 using equation (60). Figure 5 shows the estimated amplitudes of 
the third and sixth harmonics; despite the variation in power as a function 
of range due to acoustic propagation effects, these amplitudes have a fairly 
constant difference. This suggests that the ratio of the third and sixth har- 
monics (the strongest line) is a more robust feature for target ID. For this 
reason, normalizing the amplitudes by the strongest line is part of ARL's 
current target ID system. 

A phase coupling also exists between the third and sixth harmonics, as 
shown in figure 6, which is a plot of the difference 

dm = mod(2<^3 - fa, 2vr) (102) 

versus time. The value of d^e is relatively constant over short time win- 
dows. However, the difference is not zero, as predicted in some models 
(e.g., see Swami and Ghogho [7]), and it does appear to vary slightly over 
the entire time period. This apparent anomaly is perhaps due to propa- 
gation effects and/or variations in the target's aspect or operation char- 
acteristics. The extent to which differences such as in equation (102) are 
useful in target identification remains an open issue, as does the accuracy 
with which these differences can be estimated. One reason the harmonic 
numbers 3 and 6 were chosen to show coupling is that the simple 2 to 1 
ratio between them minimizes the variance of the corresponding differ- 
ence. With harmonics 5 and 7, for example, the corresponding difference 
is c?57 = mod(7</>5 — 507, 2TT) which, with all else being equal, would have a 

26 



Figure 5. Harmonic 
amplitude estimates. 

Figure 6. Phase coupling 
between third and sixth 
harmonics. 
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variance 18.5 times that of equation (102). So, for targets where 5 and 7 are 
dominant harmonic lines, the harmonic coupling will be more difficult to 
detect and track and may not be a stable feature. 

The importance of using the corrected phase in equation (69) can be demon- 
strated in the calculation of equation (102). Without the correction, empiri- 
cal results showed that half the time the calculated differences were about 
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180° off (i.e., the worst possible error), and were nearly correct the other 
half. The reason for this, assuming uniform distribution within the Fourier 
frequency bins, is that half the time the errors in the phase estimates are in 
opposite directions and add together destructively in equation (102), and 
half the time they cancel each other out. 

For large n, the variance of the MLEs of amplitude, phase, and fundamen- 
tal frequency are approximately equal to the CRB. Looking at equation (30), 
the variance of fundamental frequency goes down with the presence of 
high SNR tones with large harmonic numbers. For battlefield acoustics, this 
is not always the case, because increased propagation loss occurs at higher 
frequencies. Also, the fundamental frequency can be estimated fairly ac- 
curately with small data sizes, but equation (21) shows that exploiting the 
harmonic phase coupling for target ID may require more time samples. 
However, because of the nonstationarity of the fundamental frequency, it 
is not always possible to increase n arbitrarily, and the accuracy of phase 
estimates is limited with stationary approaches. So, obtaining more accu- 
rate phase estimates with time-varying fundamental frequency is a subject 
for further research and presents an interesting problem in nonstationary 
signal processing. 
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8.    Conclusions 

Efficient methods for the maximum likelihood estimation of parameters for 
multiple and coupled harmonics were presented that exploit the diagonal- 
ity of the information matrices when the phase is defined in the middle of 
the time window. With the generalization to local noise variances and local 
SNRs, the CRBs for the colored noise case are asymptotically equivalent to 
the white noise case, perhaps requiring a larger number of samples n. With 
the same caveat, the approximate MLE methods for the white noise case are 
also applicable to the colored noise case. The MLE methods were applied 
to real battlefield acoustic data and the problem of target identification. The 
difference between the power levels of strong harmonics was shown to be 
fairly constant over the entire run, which demonstrates the potential ro- 
bustness of these features. Harmonic phase coupling was also shown to be 
present in these acoustic signatures, although challenges remain to fully 
exploit these relationships for target ID. For example, with all else being 
equal, frequencies with simple harmonic relationships, such as 2 to 1 or 3 
to 2, are preferred to produce stable features. Also, naive use of FFT ap- 
proaches to estimate phase leads to erratic estimates. The CRBs presented 
provide insights into the limitations of the accuracy of phase-coupling esti- 
mates and suggests the value of developing nonstationary methods. 
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